首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
测绘学   4篇
大气科学   10篇
地球物理   41篇
地质学   55篇
海洋学   53篇
天文学   38篇
综合类   1篇
自然地理   11篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   15篇
  2007年   12篇
  2006年   7篇
  2005年   15篇
  2004年   12篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   7篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1966年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
71.
72.
73.
Precise determination of the partitioning of Mg and Fe2+ between olivine and ultramafic melt has been made at pressures from 5 to 13 GPa using a MA-8 type multi-anvil high-pressure apparatus (PREM) installed at Earthquake Research Institute, University of Tokyo. A very short rhenium capsule (<100 μm sample thickness) was adopted to minimize temperature variation within the sample container. Synthetic gels with the composition of the upper mantle peridotite were used as starting materials to promote the homogeneity. Analyses of quenched melts and coexisting olivines were made with an electron probe microanalyzer. The obtained partition coefficient, KD [=(FeO/MgO)ol/(FeO/MgO)melt], decreases from 0.35 to 0.25 with increasing pressure from 5 to 13 GPa, suggesting a negative correlation between pressure and KD above 5 GPa. Our result is consistent with a parabolic relationship between KD and degree of polymerization (NBO/T) of melts reported by previous studies at lower pressures. The negative correlation between pressure and KD suggests that olivine crystallizing in a magma ocean becomes more Mg-rich with depth and that primary magmas generated in the upper mantle become more Fe-rich with depth than previously estimated.  相似文献   
74.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   
75.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   
76.
The temporal variation of the total dissolved inorganic carbon (DIC) content in the western North Pacific is investigated by comparing the DIC distribution obtained from the data sets of three different periods, the GEOSECS data observed in 1973, the CO2 dynamics Cruise data observed in 1982, and recent Japanese data sets observed during the early 1990s. The overall feature of the signal of temporal DIC change during 1973 and early 1990s agreed with that of former studies, and did not significantly change with the calculation scheme (the grid-selection method vs. the multiple regression method). The observed increase in DIC among the different time scales showed a good inner consistency, which also indicates the stability of the method used in the DIC change calculation. The apparent rate of increase of the DIC inventory in the upper 1000 m water column, however, differed significantly by the data set used for the calculation: It was 5.6±2.4 g C/m2/year, based on the data comparison between 1982 and the early 1990s, while it became 7.6±2.4 g C/m2/year when based on the data between 1973 and the early 1990s. This result provides us an information about the data-dependency on the former estimation of temporal DIC change.  相似文献   
77.
Methane ( ${\mathrm {CH}}_{4}$ ) fluxes observed with the eddy-covariance technique using an open-path ${\mathrm {CH}}_{4}$ analyzer and a closed-path ${\mathrm {CH}}_{4}$ analyzer in a rice paddy field were evaluated with an emphasis on the flux correction methodology. A comparison of the fluxes obtained by the analyzers revealed that both the open-path and closed-path techniques were reliable, provided that appropriate corrections were applied. For the open-path approach, the influence of fluctuations in air density and the line shape variation in laser absorption spectroscopy (hereafter, spectroscopic effect) was significant, and the relative importance of these corrections would increase when observing small ${\mathrm {CH}}_{4}$ fluxes. A new procedure proposed by Li-Cor Inc. enabled us to accurately adjust for these effects. The high-frequency loss of the open-path ${\mathrm {CH}}_{4}$ analyzer was relatively large (11 % of the uncorrected covariance) at an observation height of 2.5 m above the canopy owing to its longer physical path length, and this correction should be carefully applied before correcting for the influence of fluctuations in air density and the spectroscopic effect. Uncorrected ${\mathrm {CH}}_{4}$ fluxes observed with the closed-path analyzer were substantially underestimated (37 %) due to high-frequency loss because an undersized pump was used in the observation. Both the bandpass and transfer function approaches successfully corrected this flux loss. Careful determination of the bandpass frequency range or the transfer function and the cospectral model is required for the accurate calculation of ${\mathrm {CH}}_{4}$ fluxes with the closed-path technique.  相似文献   
78.
In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0–200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg−1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.  相似文献   
79.
The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131‐index required for the thermometer, which is the difference in X‐ray diffraction peak positions between the 131 and 11 reflections of plagioclase, was obtained by a high‐resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring‐8. Crystallization temperatures were successfully determined from the Δ131‐indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.  相似文献   
80.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号